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Air Pollution is Bad
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Critical Windows of Susceptibility

Definition

A period in time during which an exposure can alter phenotype.
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Distributed Lag Model (DLM)

yi =
TX

t=1

xit✓t + z 0
i� + "i

• ✓ = (✓1, . . . , ✓T )0 constrained to vary
smoothly in time (e.g. spline, Gaussian
process, ...)

• adds stability to the model

• conforms with biological hypothesis that

exposure at proximal time points are

likely to have similar e↵ects

DLM analysis of PM2.5 and asthma

among boys in the ACCESS cohort.

1Figure source: Wilson et al. (2017) Biostatistics. 5



The Advantage of DLMs

1Source: Wilson et al. (2017) Am. J. Epi.
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Limitations of DLM

• Tendency to over-smooth the distributed lag function

• Lack of DLM methods for mixtures

• Lack of DLM methods for modification or e↵ect

heterogeneity

• This talk: How to use Bayesian additive regression trees

(BART) to solve all these problems
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Bayesian Additive Regression Trees (BART)

yi = f (xi) + "i

• Proposed by by Chipman, George, McCulloch (1998, JASA & 2010, AOAS)

• Estimate a general mean function

• State of the art predictive performance

• Allows for coherent Bayesian inference
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Bayesian Additive Regression Trees (BART)

g(xi , T ) = µb if xi 2 ⌘b
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BART

f (xi) =
AX

a=1

g(xi , Ta)

10



Treed Distributed Lag Model (TDLM)

yi =
TX

t=1

xit✓t + z 0
i� + "i

• Apply BART to time (t = 1, . . . ,T ) to

define structure in the lag function

✓1, . . . , ✓T

• Constant e↵ect of exposure in each

terminal node or time segment
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TDLM: Ensemble of Trees

• Use ensemble of A trees

• Adds robustness and can approximate smooth distributed lag functions

• ⌘ab and �ab is the terminal node and e↵ect for node b on tree a
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TDLM: Illustrative Example
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TDLM: Illustrative Example
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The advantages of trees and TDLM

• More flexible

• Less tuning

• Lower false discovery rate

• More robust in time series studies when adjusting for

long-term trends (Leung 2022 et al. Am. J. Epi.)

• Extends to mixture exposures

• Extends to heterogeneity with multiple modifiers

15



Critical Windows with Mixtures



Critical Windows with Mixtures

Challenges of Mixtures Assessed at Longitudinally

• High dimensional exposure space

• High correlation between mixture components

• High autocorrelation within each component

• Nonlinear associations

• Interactions between components including

time-sensitive interactions (e.g. priming)
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Critical Windows with Mixtures

6 approaches

• Bayesian kernel machine regression DLM (Wilson et al., 2021, AOAS)

• Treed distributed lag mixture models (Mork and Wilson, 2021, Biometrics)

• Spline based component selection (Antonelli, Wilson and Coull, 2021,

Biostatistics)

• Critical window variable selection for mixtures (Warren et al., 2021, AOAS)

• Lagged weighted quantile sums (Bello et al., 2017, Env. Res.)

• Partial least squares for quantile regression (Wang et al., 2022 Biometrics)
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Distributed Lag Mixture Model (DLMM)

yi =
MX

m=1

TX

t=1

ximt✓mt +
MX

m1=1

MX

m2=m1

TX

t1=1

TX

t2=1

xim1t1xim2t2✓m1m2t1t2 + z 0
i� + "i

• ✓mt is the main e↵ect of exposure m (m = 1, . . . ,M) at time t

• ✓m1m2t1t2 is the interaction among exposures m1 at time t1 and m2 at time t2

• Includes time-sensitive interactions

• Includes quadratic main e↵ects if we include self interactions

• MT +
�
M+1
2

�
T

2 parameters (20,720 in our analysis with M = 5 and T = 37)
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Treed Distributed Lag Mixture Model (TDLMM)

• Structured regression tree pairs add structure to the ✓’s

• Tree pairs define the main e↵ect and pairwise interaction for two exposures

(or a self interaction / quadratic)
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Tree Pairs & Exposure Selection

• Prior on the exposure that each tree is applied to

Saj = m if tree j in pair a is applied to exposure m

Saj |E ⇠ Categorical(E)
E ⇠ Dirichlet(, . . . ,)

• New tree proposal update: switch exposure

• If no tree uses exposure m, that exposure is selected out of the model

• Enforces hierarchical variable selection
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TDLM Simulation (single pollutant)

• Scenario 1: Binary outcome, single exposure

• n = 5000, two di↵erent average probabilities of

success (0.05, 0.5)

• Randomly placed, eight-week critical window

• Real Colorado exposure data for PM2.5

• Compare:

• TDLM with a single exposure

• Penalized cubic regression splines1

• Critical window variable selection (CWVS)2

• TDLMM with four additional exposures in

mixture model (NO2, SO2, CO, temperature)
1Gasparrini et al. (2017) Biometrics
2Warren et al. (2020) Biostatistics 21



TDLM Simulation (single pollutant)

• Better distributed lag function estimation

• More accurate critical window detection

• Minimal penalty for using TDLMM when only one exposure has a true e↵ect
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TDLMM Simulation (mixture with five components)

• Second simulation from a mixture with time-sensitive interactions

• Gaussian model

• Overall good performance

• acceptable RMSE

• proper 95% interval coverage

• high precision identifying windows

• high rate of selecting correct exposures and lower rate of selecting incorrect

exposures
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Analysis of Colorado Administrative Birth Cohort

• 195,701 full term (37 weeks) births

• Outcome: birth weight z-score (BWGAZ),

adjusted for sex, gestational age

• Five exposures assessed weekly during

gestation: PM2.5, NO2, SO2, CO, temperature

• Controlled for: maternal age, weight, income,

education, smoking, prenatal care, race,

Hispanic, county, elevation, year and month of

conception
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Main E↵ects

• Many “main e↵ects”

• Here: IQR change of one exposure and the expected corresponding change

in the co-exposures

E
h
Y

���ext = E
�
xt

��xmt = xm(0.75)

 
, ex[t] = x , z = z0

i

� E
h
Y

���ext = E
�
xt

��xmt = xm(0.25)

 
, ex[t] = x , z = z0

i
25



Temperature-PM2.5 Interaction
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Heterogeneous Critical Windows



Heterogeneity and Modification with Critical Windows

• Increased focus on vulnerable populations and precision environmental health

• Standard approach is to conduct a stratified analysis

• Bayesian distributed lag interaction models allow for modification by a single

categorical factor (Wilson et al, 2017, Biostatistics)

• Lack of methods for continuous modifying factors and multiple modifiers

• Heterogeneity by multiple modifiers poses dimensionality and multiple

comparison problems
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Heterogeneity DLM (HDLM)

yi =
TX

t=1

xit✓t(mi) + z 0
i� + "i

• DLM for a single pollutant with

personalized e↵ects based on a vector of

modifying factors m

• Key idea: use BART to partition modifier

space and have a unique distributed lag

function for each terminal node

• Allows for multiple modifiers that are

continuous, categorical and/or ordinal
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Heterogeneity DLM (HDLM)
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Nested and Shared Tree HDLM

• We can fit the distributed lag function with splines, Gaussian processes, or

more trees

Nested Tree HDLM Shared Tree HDLM
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Nested and Shared Tree HDLM
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• HDLMs have nominal coverage and

low false window detection rates

• Includes true modifiers with high

probability

• Includes null modifiers with lower

probability (0.6-0.7)

• Treed-DLM approaches better than

GP-DLM when subgroups e↵ects

vary in smoothness

• Comparable to DLM when there is

no heterogeneity
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Birth Weight Analysis

• 310,236 full term (37 weeks) births from Colorado

Front Range with estimated conception dates

between 2007 – 2015

• Outcome: birth weight z-score (BWGAZ),

adjusted for sex, gestational age

• PM2.5 exposure measured weekly during gestation

• Controlled for: mother’s age, height, weight, body

mass index, income, education, marital status,

prenatal care, smoking habits, race, Hispanic,

child’s sex, year/month of conception, elevation,

county, trimester average temperature
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Analysis with DLM (no heterogeneity)
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Modifier Selection
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Modification by Maternal BMI and Hispanic Status
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Modification by Maternal Education and Hispanic Status
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Cumulative E↵ect by M. Age, M. BMI and Hispanic Status
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Posterior Analysis of Split Points
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Summary

• We can add structure to BART to get interpretable estimates of DLMs

• Allows for identifying critical windows

• Allows for mixtures

• Allows for heterogeneity

• Overall good finite sample properties

• Available for linear and logistic regression (zero inflated count data coming

soon)

• Treed distributed lag nonlinear model also available (Mork and Wilson 2021,

Biostatistics)

• R code available: github.com/danielmork/dlmtree

39
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