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ACCESS Prospective Birth Cohort

traditional LUR predictors to yield
residence-specific estimates of daily PM2.5

as detailed previously (22). The model was
run using day-specific calibrations of AOD
data using ground PM2.5 measurements
from 78 monitoring stations covering
New England and LUR and meteorologic
variables (temperature, wind speed,
visibility, elevation, distance to major roads,
percent open space, point emissions,
and area emissions). This approach
incorporates highly resolved spatial
information from the LUR data and
important spatiotemporal data from the
remote sensing satellite data.

The AOD-PM2.5 relationship was
calibrated for each day using data from
grid cells with both monitor and AOD
values using mixed models with random
slopes for day, nested within region. For
days without AOD data (because of cloud
coverage, snow, and so forth), the model
was fit with a smooth function of latitude
and longitude and a random intercept for
each cell (similar to universal Kriging).
The “out of sample” 10-fold cross
validation R2 for daily values was 0.83 and
0.81 for days with and without available
AOD data, respectively. For use in the
health effect models, to reduce potential
noise caused by day-to-day PM2.5 variation,
daily levels were averaged into weekly
exposure profiles. Predicted overall prenatal
PM2.5 levels at participant’s residence in
relation to the 103 10 km grids for which
AOD data were available are shown in
Figure 1. Although levels were higher
around major roadways as anticipated,
there was reasonable heterogeneity.

Asthma
Maternal-reported clinician-diagnosed
asthma was ascertained from birth up to
age 6 years through telephone and face-to-
face interviews at approximately 3-month
intervals for the first 24 months then
annually thereafter. Mothers were asked,
“Has a doctor or nurse ever said that your
child had asthma?” Most of these children
were given a diagnosis of asthma after the
age of 3 years (78.6%) (see Figure E1 in
the online supplement).

Covariates
Maternal age, race, education, and
prepregnancy height and weight, and child’s
sex were ascertained by questionnaire; date
of birth, gestational age, and birth weight
were obtained by medical record review.

A validation analysis on a subset of 121
ACCESS women showed no difference in
the level of agreement/disagreement for
height and weight when comparing values
measured early in pregnancy (,10 wk)
with self-report (34). Women were asked
about smoking at enrollment and in the
third trimester and classified as prenatal
smokers if smoking at either visit. Mothers
reported postnatal smoking and whether
others smoked in the home at each
postpartum interview. Household crowding
was calculated by dividing the number of
persons living in the home by the number
of rooms based on maternal report in
pregnancy. Maternal atopy was defined by
self-reported doctor-diagnosed asthma,
eczema, and/or hay fever. Body mass index
was calculated by dividing weight by height
squared (kg/m2); obesity was defined as
body mass index greater than or equal to
30 kg/m2 (35).

Because prenatal stress may covary
with pollution and has been associated with
asthma (36), this was also considered as

a confounder. We measured stress using
the Crisis in Family Systems-Revised survey
administered prenatally within 2 weeks of
enrollment (37, 38). This survey assesses
life events experienced across 11 domains
(e.g., financial, relationships, violence,
housing, discrimination/prejudice).
Mothers endorsed events experienced in
the past 6 months and rated each as
positive, negative, or neutral. The number
of domains with one or more negative event
was summed to create a continuous
negative life events (NLEs) domain score,
with higher scores indicating greater stress.
Because birth weight and gestational
age may be on the pathway between
prenatal PM and asthma risk, birth
weight for gestational age z score (39)
was considered in sensitivity analyses.

Statistical Analysis
Analyses included 736 singleton full-term
(gestational age >37 wk) children with
two or more postnatal interviews followed
up to age 6 years and air pollution exposure
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Figure 1. Predicted daily particulate matter with a diameter less than or equal to 2.5 mm (PM2.5)
levels for Asthma Coalition on Community, Environment and Social Stress participants averaged over
pregnancy. This figure demonstrates predicted daily PM2.5 levels for study participants based on
residence and averaged throughout the gestation period. The 103 10 km aerosol optical depth grid
used to predict daily PM2.5 levels is also depicted.
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Study participants (i):
997 Boston-area births
between 8/2002 and 1/2007

Exposure (Xit): PM2.5 at
maternal residence for each
week (t) of pregnancy

Outcome (Yi ): child asthma

Baseline covariates (Zi ): child sex, maternal pre-pregnancy BMI,
age, education, race/ethnicity, atopy, self reported smoking during
pregnancy, stress index, neighborhood disadvantage index

[figure source: Hsu et al. Am. J. Respir. Crit. Care Med. 2015]
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Critical Windows of Vulnerability

Definition

A period in time during which there is an increased asso-
ciation between exposure and a future health outcome.
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Asthma Example with DLM

Estimated association between PM2.5 and
childhood asthma among 283 boys

g (µi) = α +
T∑
t=1

θtXit + ZT
i γ

I E (Yi) = µi and g(·) is a link function
4



Patterns of Heterogeneity
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Patterns of Heterogeneity
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Separating Windows and Effects

θt = βw(t)
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Separating Windows and Effects w/ Heterogeneity
Same within-window effect, β Different within-window effect, βj
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Bayesian Distributed Lag Interaction Model

I With no effect heterogeneity (BDLIM-n) the model is:

g (µi) = α + β

∫
Xi(t)w(t)dt + ZT

i γ

I w(t) identifies critical windows of vulnerability

I β is the within-window effect

I Identifiability constraints:
•
∫
{w(t)}2dt = 1

•
∫
w(t)dt ≥ 0
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BDLIM with Effect Modification
I BDLIM-bw

g (µi) = αji + βji

∫
Xi(t)wji (t)dt + ZT

i γ

I BDLIM-w

g (µi) = αji + β

∫
Xi(t)wji (t)dt + ZT

i γ

I BDLIM-b

g (µi) = αji + βji

∫
Xi(t)w(t)dt + ZT

i γ

I Subject i is in group ji
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Parameterization of the Functional Components

I Use eigenfunction basis {ψk(t)}Kk=1 of smoothed Σ̂X (·, ·)

Xi(t) =
K∑

k=1

ξikψk(t) & w(t) =
K∑

k=1

θkψk(t)
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Parameterization of the Functional Components

I Use eigenfunction basis {ψk(t)}Kk=1 of smoothed Σ̂X (·, ·)

Xi(t) =
K∑

k=1

ξikψk(t) & w(t) =
K∑

k=1

θkψk(t)

I Now a mixed model (X∗
i = X̂iΨ

T )

g(µi) = α + βX∗T
i θ + ZT

i γ
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Parameterization of the Functional Components

I Use eigenfunction basis {ψk(t)}Kk=1 of smoothed Σ̂X (·, ·)

Xi(t) =
K∑

k=1

ξikψk(t) & w(t) =
K∑

k=1

θkψk(t)

I Now a mixed model (X∗
i = X̂iΨ

T )

g(µi) = α + βX∗T
i θ + ZT

i γ

‖θ‖ = 1 ⇐⇒
∫
{w(t)}2dt = 1

1TΨθ ≥ 0 ⇐⇒
∫

w(t)dt ≥ 0

K = 3
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Prior Specification & Computation

Priors

θ ∼ Unif
{
θ : ‖θ‖ = 1 & 1TΨθ ≥ 0

}
β ∼ N(0, τ 2)
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Prior Specification & Computation

Priors

θ ∼ Unif
{
θ : ‖θ‖ = 1 & 1TΨθ ≥ 0

}
β ∼ N(0, τ 2)

Computation 1: Reparameterization and Gibbs

I Reparameterize BDLIM-n and BDLIM-bw:
βθ = θ∗ ∼ N(0, κτ 2I)

I Estimate as mixed model

12



Prior Specification & Computation

Priors

θ ∼ Unif
{
θ : ‖θ‖ = 1 & 1TΨθ ≥ 0

}
β ∼ N(0, τ 2)

Computation 1: Reparameterization and Gibbs

I Reparameterize BDLIM-n and BDLIM-bw:
βθ = θ∗ ∼ N(0, κτ 2I)

I Estimate as mixed model

Computation 2: Slice Sampler

I Sample directly from constrained space
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Simulation

Sim A: Compares BDLIM-n and DLM with no heterogeneity

I BDLIM-n and DLM are near identical
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Simulation

Sim A: Compares BDLIM-n and DLM with no heterogeneity

I BDLIM-n and DLM are near identical

Sim B: Tests BDLIM with effect heterogeneity

I Correctly identifies patterns of heterogeneity

I Improves estimation (RMSE, bias) relative to BDLIM-bw

I Maintains 95% interval coverage of β and w(t)
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Asthma Results

n
female baby 261
male baby 283
total 544
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Asthma Results

note: 10% smaller posterior standard deviation for β̂j than with

BDLIM-bw
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BWGA z-score Results

non-obsese obsese
mother mother total

female baby 155 84 239
male baby 182 85 267
total 337 169 506
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BWGA z-score Results

note: 14% smaller posterior standard deviation for β̂j than with

BDLIM-bw
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Summary

Proposed BDLIM to estimate under 4
hypothesized models of heterogeneity

Identified window where PM2.5 exposures
were associated with increased asthma
incidence in boys

Evidence of a negative association between
PM2.5 and BWGAz among boys born to
obese mothers

Software available in regimes R package
anderwilson.github.io/regimes/bdlim.html
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Computation 1: Reparameterization and Gibbs

I Reparameterize BDLIM-n and BDLIM-bw
• κ = β2τ−2

• θ∗ = βθ

I Reparameterized priors are
• κ ∼ χ2

1

• θ∗ ∼ N(0, κτ 2I)

I Estimate as mixed model
• g(µi ) = α + X∗T

i θ∗ + ZT
i γ

• κ|rest ∼ generalized inverse-Gaussian

I Still identifiable
• β = ‖θ∗‖ × sign{1TΨθ∗}
• θ = θ∗β−1

A1



Computation 2: Slice Sampler

I For BDLIM-b, BDLIM-w, and all GLMs sample directly
from constrained space

I Adapt elliptical slice sampling approach
• Neal (2003) Ann. Stat. 2003
• Murray et al. (2012) J. Mach. Learn. Res. W&CP

I Reduce problem to sampling on 1-dimensional paths
through the constrained K -dimensional parameter space
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Simulation

Sim A: Compares BDLIM-n and DLM with no heterogeneity

I BDLIM-n and DLM are near identical

Sim B: Tests BDLIM with effect heterogeneity

I Correctly identifies patterns of heterogeneity

I Improves estimation of shared parameters

Details

I n = 506, 239 girls (j = 0) and 267 boys (j = 1)

I 13 covariates (3 continuous and 10 binary)

I 1000 simulated datasets
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Simulation w(t)
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Simulation Results: Posterior Model Probability
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Simulation Results: Absolute Bias for β

Blue is model corresponding to the true data generating patterns

A6



Simulation Results: RMSE for w(t)

Blue is model corresponding to the true data generating patterns
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Simulation w(t)
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Simulation Results: Posterior Model Probability
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Simulation Results: Absolute Bias for β

Blue is model corresponding to the true data generating patterns
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Simulation Results: RMSE for w(t)

Blue is model corresponding to the true data generating patterns
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Simulation Results: Coverage

Blue is model corresponding to the true data generating patterns
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Summarizing the Posterior of w(t)
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Summarizing the Posterior of w(t)

I Posterior mean θ̄

⇒
∫

w̄(t)2dt 6= 1
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Summarizing the Posterior of w(t)

I Posterior mean θ̄

⇒
∫

w̄(t)2dt 6= 1

I Bayes estimate w.r.t.

L(θ, θ̂) =
‖θ − θ̂‖2

1{‖θ̂‖ = 1}
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Summarizing the Posterior of w(t)

I Posterior mean θ̄

⇒
∫

w̄(t)2dt 6= 1

I Bayes estimate w.r.t.

L(θ, θ̂) =
‖θ − θ̂‖2

1{‖θ̂‖ = 1}

I Equivalently

θ̂ = θ̄‖θ̄‖−1
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