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Low-Cost, Real-Time Sensors

• Air pollution exposure causes a wide

variety of negative health outcomes

• Most studies rely in area-level exposure

such as from a centrally located

monitor or modeled exposure surface

• Low-cost, real-time sensors offer the

promise to measure air pollution at the

individual level

• Measure exposure high temporal

resolution

• Moves with individuals
1Figure source: https://finance.yahoo.com
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Low-Cost, Real-Time Sensors

• Lots of data

• Lots of promise

• Lots of challenges

1Figure source: https://finance.yahoo.com
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Fort Collins Commuter Study (FCCS)

• 45 individuals

• 1 to 13 non-consecutive

days each

• Exposure measured for

• black carbon (BC)

• carbon monoxide (CO)

• fine particulate matter

(PM2.5)

• Exposure at 10 second

intervals

1Figure source: Good et al. (2016) J. of Exposure Science & Environmental Epidemiology. 4



Fort Collins Commuter Study (FCCS)

1Figure source: Koehler et al. (2019) Indoor Air. 5



Fort Collins Commuter Study (FCCS)
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Statistical Challenges of Low-Cost, Real-Time Sensors

• Missing data due to

• user non-compliance

• device failure

• levels below limit of detection

• How to classify exposure?

• How to relate to health outcomes?
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Our Objectives

• Goals:

• Find shared patterns in exposures

• Impute missing data

• Want to do this in a way that allows for rapid changing of microenvironment

and shared trends / common spaces

• Previous imputation methods either ignore temporal ordering of data or

treat it as smoothly varying (Arroyo et al., 2018; Molitor et al., 2006; Krall

et al., 2015; Houseman et al., 2017)
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Hidden Markov Model

x = covariates, z = hidden states, y = exposure data
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Infinite Hidden State Model: Notation

• Observed data

• yist is the vector of exposures for individual i on day s at time t

• Yis,1:Tis
is the full multivariate time series for individual i on sampling day s

• xist is a set of covariates

• time of day

• individual characteristics

• user reported activity or microenvironment (e.g. home, work, transit, etc.)

• Latent structure

• zist is a categorical factor representing the latent state assignment

• zist = k if individual i is in latent state k at at time t on day s

• iHMM allows for unknown number of hidden states
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Infinite Hidden State Model: Key Assumptions

• Conditional independence of observed data conditional on the hidden states

f (yit |yi ,1:t−1, zi ,1:t) = f (yit |zit)

• Latent states follow the first-order Markov property

p(zit |zi ,1:t−1) = p(zit |zi ,t−1)
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Multivariate Normal Emission Distribution

Exposure data for individual i , sampling day s, and time point t is modeled

yist |zist = k ∼ N(µk ,Σk)

µk |Σk ∼ N

(
0,

1

λ
Σk

)
Σk ∼ Inverse Wishart (ν, Ip)

z = hidden states, y = exposure data
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Hidden State Model

Model hidden states with hidden Markov model

zit |zi ,t−1 ∼ Categorical
(
πzi,t−1

)

z = hidden states, y = exposure data 13



Probit Stick-Breaking Process on the Transition Distribution

• Want the state assignments and/or transitions to be covariate dependent

• diurnal patterns

• shared states among repeated sampling days for an individual

• auxiliary information like time diary data

• patterns in transitions

14



Probit Stick-Breaking Process on the Transition Distribution

• The probability of individual i on sampling day s transitioning from state j

to state k at time t is

πjk(xist) ≡ P(zist = k |zis,t−1 = j , xist)

= Φ(αjk + x′istβk + x′istγik)
∏
l<k

{1− Φ(αjl + x′istβl + x′istγil)}

• αjk controls state transitions at consecutive time points

• βk and γik control covariate-dependent and subject-specific trends
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Prior Distributions on Transition Parameters

Transitions among states

αjk |σ2
α ∼ N(0, σ2

α) for j ̸= k

σ−2
α ∼ Gamma(1, 1)

Self-transitions

αjj |mα, vα ∼ N(mα, vα)

mα ∼ N(0, 1)

v−1
α ∼ Gamma(1, 1)

Covariate effects

βk ∼ N(0, I)

γik |κ2 ∼ N(0, κ2I)

κ−2 ∼ Gamma(1, 1)
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Posterior Sampling

• “Beam” sampling = slice

sampling + dynamic

programming (Van Gael et

al., 2008)

• Sample entire hidden state

trajectories at once

• Better mixing and faster

convergence than Gibbs

sampling
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Posterior Sampling

• Slice sampling reduces

problem to finite number of

paths

• Forward pass calculates

probabilities of each path

• Backwards step samples

latent sequence
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Imputation Model

• Impute missing data conditional on the state assignment using multivariate

normal conditionals

• MAR for all components

yit,MAR|zit = k ,µk ,Σk ∼ N (µk ,Σk)

• MAR for only some components use conditional distributions of[
yit,obs
yit,MAR

] ∣∣∣∣∣zit = k ,µk ,Σk ∼ N

([
µ(k,obs)

µ(k,MAR)

]
,

[
Σ(k,obs,obs) Σ(k,obs,MAR)

Σ(k,MAR,obs) Σ(k,MAR,MAR)

])
• For data missing below LOD similar but from a truncated multivariate

distribution

• We know the LOD and know if data is below LOD or MAR
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Simulation Study

Purpose

• Evaluate parameter estimation

• Evaluate imputations

• Compare with competing

methods

Simulation Scenarios

• Shared cyclical trends

• Distinct cyclical trends

Missing Data Levels

• 0%, 5%, 10%, 20%

• MAR and below LOD 20



Models for Simulation Study

• *Joint no covariates: shared states, no covariates

• *Joint cyclical: shared states and shared cyclical trends

• Independent no covariates: individual states, no covariates

• Independent cyclical: individual states and individual cyclical trends

• Joint DPMM: Dirichlet process mixture model, shared states, no temporal

dependency

*proposed methods

21



Shared Scenario Results 5% Missing Data

*proposed methods
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Validation Study Results
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Fort Collins Commuter Study (FCCS)

• Fit joint model with cyclical trends to the data

• Considered average exposure over five minute intervals

• Trimmed data to be 24 hour segments
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State-Specific Mean Estimation
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Hidden State Correspondence with Microenvironments
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Fort Collins Commuter Study (FCCS)
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Fort Collins Commuter Study (FCCS)
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Summary

• Developed statistical method for analyzing multiple multivariate time series

with missing data

• PSBP on transition distribution to estimate an unknown number of hidden

states

• Multiple imputation for data that are MAR and below the LOD

• Demonstrated our method’s estimation and imputation gains over

competing approaches in simulation and validation studies

• Applied method to FCCS data to impute missing exposure data and identify

time-activity patterns associated with exposures

• Many more challenges with low-cost, real-time sensor data
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Thank You

anderwilson.github.io

ander.wilson@colostate.edu

@ander wilson
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