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Overall Motivation

• Substantial research on mixture methods but mostly focused on exposure
observed at a single time point

• Many methods to identify critical windows, mostly based on distributed lag
models (DLMs), but generally for only a single exposure

• Our motivation is to identify critical windows and estimate the
exposure-response relationship for mixtures that are assessed longitudinally
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ACCESS Prospective Birth Cohort

• 997 Boston-area births between 8/2002 and
1/2007

• PM2.5 and components at maternal
residence for each week of pregnancy

• Primary outcome is birth weight for
gestational age z-score (BWGAZ)

• Baseline covariates: maternal, age,
education, race/ethnicity, pre-pregnancy
BMI, atopy, self reported smoking during
pregnancy, stress index, neighborhood
disadvantage index, season of birth

Source: Hsu et al. Am J Respir Crit Care

Med.
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Existing Evidence

Source: Lakshmanan et al. (2015) Env. Res. Source: Wilson et al. (2017) Biostatistics

• Evidence of an association between PM2.5 exposure and BWGAZ for male
babies with obese mothers (n = 109)

• What about nitrate, organic carbon (OC), elemental carbon (EC) and
sulfate? 4



Data Setting and Objectives

• Resulting data structure is 4 exposures at
37 time points

• High dimensional exposure data
• Can be highly multicollinear

• Want a model that allows for:
• Nonlinear associations
• Interaction effects
• Identification of critical windows
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Bayesian Kernel Machine Regression (BKMR)

• BKMR estimates a high dimensional exposure-response function
Yi = h(Ei1, . . . ,EiM) + Z′

iγ + εi

• For repeated measures of exposures we can:
1. Reduce the dimension of the exposure by using pregnancy average exposure

• Ignores variation in exposure and the magnitude of the effect over pregnancy
• Cannot identify critical windows
• May obscure effects that are limited to a small number of weeks

2. Include all measures of exposures
• May result in model instability
• Fails to account for biological understand that exposure effect at proximal

time points will likely be similar in sign and magnitude
• Hard to interpret results
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Distributed Lag Model (DLM)

• Our approach is to use the constrained DLM framework within BKMR
• Reduces the dimension of the exposure data
• Adds structure so that the exposure-effect varies smoothly across gestational

weeks
• Improves model stability

• The DLM model for a single exposure is

Yi = α +
T∑
t=1

Xitδt + Z′
iγ + εi

• Regression coefficient δt is constrained to vary smoothly over time
• Alternatively can be represented in a functional form using continuous time

T∑
t=1

Xitδt ⇐⇒
∫
T
xi(t)δ(t)dt
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BKMR-DLM

• Represent each exposure as a weighted exposure

Eim =

∫
T
wm(t)xim(t)dt

• Weight function wm(t) identifies critical windows similar to a constrained
DLM

• The BKMR model estimates the exposure-response surface as a function of
the weighted exposures

Yi = h(Ei1, . . . ,EiM) + Z′
iγ + εi

• Bayesian model fitting estimates the weight functions wm(t) and the
mixture effect h() simultaneously.

• Weight functions are constrained to have norm one and positive integral for
identifiability and parameterized with natural splines
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BKMR-DLM Properties

• Allows for nonlinear associations and higher order interactions

• Identifies critical windows through the weight function

• Exposures may have positive effect of some time periods and negative over
other time periods

• Simulation results show
• Ability to estimate nonlinear exposure-response functions and interactions
• Low power to detect critical windows
• Improved estimation of the exposure-response function even when a critical

window cannot be identified
• Very low frequency of identifying incorrect critical windows
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Illustration on ACCESS Data

Nitrate OC EC Sulfate
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• Similar interpretation of
exposure-response function
to BKMR

• Key difference: x-axis is
weighted exposure
(estimated)
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Illustration on ACCESS Data

Nitrate OC EC Sulfate
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• Areas of the weight function that deviate from zero identify critical windows

• The sign of the weight function does not determine the direction of the
association
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Illustration on ACCESS Data
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• DLM for each exposure stratified by mean nitrate level over pregnancy
• BKMR-DLM is a potentially powerful exploratory tool to identify possible

interactions to investigate with more parsimonious models 12



Summary

• BKMR-DLM allows for repeated measures of exposure to a mixture

• Improved estimation of exposure-response function compared to BKMR with
pregnancy average exposures or an additive DLM or DLNM

• Allows for nonlinear associations and interactions

• Low power to identify critical windows but can in high-signal settings

• Software available: anderwilson.github.io/regimes
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http://anderwilson.github.io/regimes/
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RD-83587201. Its contents are solely the responsibility of the grantee and do not
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