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Air Pollution is Bad
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Critical Windows of Susceptibility

Definition

A period in time during which an exposure can alter phenotype.
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Distributed Lag Model (DLM)

yi =
T∑
t=1

xitθt + z ′
iγ + εi

• θ = (θ1, . . . , θT )
′ constrained to vary

smoothly in time (e.g. spline, Gaussian

process, ...)

• adds stability to the model

• conforms with biological hypothesis that

exposure at proximal time points are

likely to have similar effects

DLM analysis of PM2.5 and asthma

among boys in the ACCESS cohort.

1Figure source: Wilson et al. (2017) Biostatistics. 5



Heterogeneity and Modification with Critical Windows

• Increased focus on vulnerable populations and precision

environmental health

• Standard approach is to conduct a stratified analysis

• Bayesian distributed lag interaction models allow for

modification by a single categorical factor (Wilson et al,

2017, Biostatistics)

• Lack of methods for multiple modifiers

• Heterogeneity by multiple modifiers poses

dimensionality and multiple comparison problems

• Our work: How to estimate heterogeneous DLMs using

Bayesian additive regression trees (BART)
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Bayesian Additive Regression Trees (BART)

yi = f (xi) + εi

• Proposed by by Chipman, George, McCulloch (1998, JASA & 2010, AOAS)

• Estimate a general mean function

• State of the art predictive performance

• Allows for coherent Bayesian inference
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Bayesian Additive Regression Trees (BART)

g(xi , T ) = µb if xi ∈ ηb
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BART

f (xi) =
A∑

a=1

g(xi , Ta)
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BART Alone Does Not Work

Modifier = 0 Modifier = 1 Between group
difference
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• Does not account for

autocorrelation between

repeated measures of

exposure

• Applies same amount and

type of shrinkage and

selection to exposures and

candidate modifiers
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Treed Distributed Lag Model (TDLM) To Add Structure

yi =
T∑
t=1

xitθt + z ′
iγ + εi

• Apply BART to time (t = 1, . . . ,T ) to

define structure in the lag function

θ1, . . . , θT

• Constant effect of exposure in each

terminal node or time segment

.
1Source: Mork & Wilson (2023) Biometrics 11



TDLM: Ensemble of Trees

• Use ensemble of A trees

• Adds robustness and can approximate smooth distributed lag functions

• ηab and δab is the terminal node and effect for node b on tree a
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TDLM: Illustrative Example
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TDLM: Illustrative Example
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The advantages of trees and TDLM

• More flexible

• Less tuning

• Lower false discovery rate

• More robust in time series studies when adjusting

for long-term trends (Leung 2022 et al. Am. J.

Epi.)

• Extends to mixture exposures

• Extends to heterogeneity with multiple modifiers
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Heterogeneity DLM (HDLM)

yi =
T∑
t=1

xitθt(mi) + z ′
iγ + εi

• DLM for a single pollutant with

personalized effects based on a vector of

modifying factors m

• Key idea: use BART to partition modifier

space and have a unique distributed lag

function for each terminal node

• Allows for multiple modifiers that are

continuous, categorical and/or ordinal
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Heterogeneity DLM (HDLM)
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Nested and Shared Tree HDLM

• We can fit the distributed lag function with splines, Gaussian processes, or

more trees

Nested Tree HDLM Shared Tree HDLM
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Nested and Shared Tree HDLM

• Dirichlet prior to modifier inclusion (Linero 2018, JASA)

• Horseshoe-type priors on terminal node parameters

• Estimated with MCMC following original BART algorithm with a few key

changes including additional grow step complexity for the modifier trees in

the nested tree model
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Nested and Shared Tree HDLM

Modifier = 0 Modifier = 1 Between group
difference
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• HDLMs have nominal coverage and

low false window detection rates

• Includes true modifiers with high

probability

• Includes null modifiers with lower

probability (0.6-0.7)

• Comparable to DLM when there is

no heterogeneity
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Birth Weight Analysis

• 310,236 full term (37 weeks) births from Colorado

Front Range with estimated conception dates

between 2007 – 2015

• Outcome: birth weight z-score (BWGAZ),

adjusted for sex, gestational age

• PM2.5 exposure measured weekly during gestation

• Controlled for: mother’s age, height, weight, body

mass index, income, education, marital status,

prenatal care, smoking habits, race, Hispanic,

child’s sex, year/month of conception, elevation,

county, trimester average temperature
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Analysis with DLM (no heterogeneity)
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Modifier Selection
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Modification by Maternal BMI and Hispanic Status
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Modification by Maternal Education and Hispanic Status
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Cumulative Effect by M. Age, M. BMI and Hispanic Status
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Posterior Analysis of Split Points
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Summary

• We can add structure to BART to get interpretable

estimates of DLMs

• Allows for identifying critical windows

• Allows for heterogeneity

• Overall good finite sample properties

• Available for linear and logistic regression

• R code available: github.com/danielmork/dlmtree
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