
Estimating Perinatal Critical Windows of

Susceptibility to Environmental Mixtures via

Structured Bayesian Regression Tree Pairs

Daniel S. Mork Harvard T. H. Chan School of Public Health

Ander Wilson Colorado State University

ENAR 2022

1



Critical Windows of Susceptibility

Definition

A period in time during which an exposure can alter phenotype.
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Distributed Lag Model (DLM)

yi =
T∑
t=1

xitθt + z ′
iγ + εi

• θ = (θ1, . . . , θT )
′ constrained to vary

smoothly in time (e.g. spline, Gaussian

process, ...)

• adds stability to the model

• conforms with biological hypothesis that

exposure at proximal time points are

likely to have similar effects

DLM analysis of PM2.5 and asthma

among boys in the ACCESS cohort.

1Figure source: Wilson et al. (2017a) Biostatistics. 3



Critical Windows with Mixtures

Challenges of Mixtures Assessed at Longitudinally

• High dimensional exposure space

• High correlation between mixture components

• High autocorrelation within each component

• Nonlinear associations

• Interactions between components including

time-sensitive interactions (e.g. priming)
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Limitations of DLM

• Tendency to over-smooth the distributed lag function

• Lack of DLM methods for mixtures

• This talk: How to use Bayesian additive regression trees

(BART) to better estimate a DLM and extend DLM to

mixtures
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Bayesian Additive Regression Trees (BART)

yi = f (xi) + εi

• Proposed by by Chipman, George, McCulloch (1998, JASA & 2010, AOAS)

• Estimate a general mean function

• State of the art predictive performance

• Allows for coherent Bayesian inference
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Treed Distributed Lag Model (TDLM)

yi =
T∑
t=1

xitθt + z ′
iγ + εi

• Apply BART to time (t = 1, . . . ,T ) to

define structure in the lag function

θ1, . . . , θT

• Constant effect of exposure in each

terminal node or time segment
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TDLM: Ensemble of Trees

• Use ensemble of A trees

• Adds robustness and can approximate smooth distributed lag functions

• ηab and δab is the terminal node and effect for node b on tree a
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TDLM: Illustrative Example
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TDLM: Illustrative Example
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Distributed Lag Mixture Model (DLMM)

yi =
M∑

m=1

T∑
t=1

ximtθmt +
M∑

m1=1

M∑
m2=m1

T∑
t1=1

T∑
t2=1

xim1t1xim2t2θm1m2t1t2 + z ′
iγ + εi

• θmt is the main effect of exposure m (m = 1, . . . ,M) at time t

• θm1m2t1t2 is the interaction among exposures m1 at time t1 and m2 at time t2

• Includes time-sensitive interactions

• Includes quadratic main effects if we include self interactions

• MT +
(
M+1
2

)
T 2 parameters (20,720 in our analysis with M = 5 and T = 37)
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Treed Distributed Lag Mixture Model (TDLMM)

• Structured regression tree pairs add structure to the θ’s

• Tree pairs define the main effect and pairwise interaction for two exposures

(or a self interaction / quadratic)
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Tree Pairs & Exposure Selection

• Prior on the exposure that each tree is applied to

Saj = m if tree j in pair a is applied to exposure m

Saj |E ∼ Categorical(E)
E ∼ Dirichlet(κ, . . . , κ)

• New tree proposal update: switch exposure

• If no tree uses exposure m, that exposure is selected out of the model

• Enforces hierarchical variable selection
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TDLM Simulation (single pollutant)

• Scenario 1: Binary outcome, single exposure

• n = 5000, two different average probabilities of

success (0.05, 0.5)

• Randomly placed, eight-week critical window

• Real Colorado exposure data for PM2.5

• Compare:

• TDLM with a single exposure

• Penalized cubic regression splines1

• Critical window variable selection (CWVS)2

• TDLMM with four additional exposures in

mixture model (NO2, SO2, CO, temperature)
1Gasparrini et al. (2017) Biometrics
2Warren et al. (2020) Biostatistics 14



TDLM Simulation (single pollutant)

• Better distributed lag function estimation

• More accurate critical window detection

• Minimal penalty for using TDLMM when only one exposure has a true effect
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TDLMM Simulation (mixture with five components)

• Second simulation from a mixture with time-sensitive interactions

• Gaussian model

• Overall good performance

• acceptable RMSE

• proper 95% interval coverage

• high precision identifying windows

• high rate of selecting correct exposures and lower rate of selecting incorrect

exposures
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Analysis of Colorado Administrative Birth Cohort

• 195,701 full term (37 weeks) births

• Outcome: birth weight z-score (BWGAZ),

adjusted for sex, gestational age

• Five exposures assessed weekly during

gestation: PM2.5, NO2, SO2, CO, temperature

• Controlled for: maternal age, weight, income,

education, smoking, prenatal care, race,

Hispanic, county, elevation, year and month of

conception
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Main Effects

• Many “main effects”

• Here: IQR change of one exposure and the expected corresponding change

in the co-exposures

E
[
Y
∣∣∣x̃t = E

{
xt

∣∣xmt = xm(0.75)

}
, x̃[t] = x , z = z0

]
− E

[
Y
∣∣∣x̃t = E

{
xt

∣∣xmt = xm(0.25)

}
, x̃[t] = x , z = z0

]
18



Temperature-PM2.5 Interaction
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Summary

• We can add structure to BART to get interpretable estimates of DLMs

• Allows for identifying critical windows

• Tree-pairs allows for mixtures

• Overall good finite sample properties

• Available for linear and logistic regression (zero inflated count data coming

soon)

• Similar approach for heterogeneity (Mork et al. 2022, ArXiv:2109.13763)

• Treed distributed lag nonlinear model also available (Mork and Wilson 2021,

Biostatistics)

• R code available: github.com/danielmork/dlmtree
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github.com/danielmork/dlmtree


Thank You

anderwilson.github.io

ander.wilson@colostate.edu

@ander wilson
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Bayesian Additive Regression Trees (BART)

g(xi , T ) = µb if xi ∈ ηb



BART

f (xi) =
A∑

a=1

g(xi , Ta)



BART Priors

• Implicit prior based on tree generating process

• Three parts:

• Prior that a node at tree depth d splits

• Prior on variable that is split at a node (e.g.

uniform from all variables)

α(1 + d)−β α ∈ (0, 1), β ∈ [0,∞)

• Prior on a rule that splits that variable (e.g.

uniform breaks in range or uniform of subgroups

of categorical variables)

• Independent Gaussian priors on µs



BART Computation

• µs can be integrated out to avoid changing

parameter space problem

• Bayesian backfitting updates one tree at a time

with Metropolis–Hastings

• Four possible tree-update steps

• Grow

• Prune

• Change splitting rule

• Swap parent and child node order

• Update other parameters with Gibbs



TDLMM



TDLM Priors

δab|τ 2a , ν2, σ2 ∼ N (0, τ 2a ν
2σ2)

ν ∼ C+(0, 1)

τa ∼ C+(0, 1)

σ ∼ C+(0, 1)

γ ∼ MVN (0, σ2cI )

α = 0.95, β = 2



TDLMM Priors

δajb|µ2
Saj
, ν2, σ2 ∼ N (0, µ2

Saj
ν2σ2) (main effects)

µSaj ∼ C+(0, 1)

ζab1b2|µ2
Sa1Sa2

, ν2, σ2 ∼ N (0, µ2
Sa1Sa2

ν2σ2) (interactions terms)

µSa1Sa2 ∼ C+(0, 1)

ν ∼ C+(0, 1)

σ ∼ C+(0, 1)

γ ∼ MVN (0, σ2cI )

α = 0.95, β = 2



TDLMM Computation

Key modifications to the BART MCMC algorithm:

• Integrate out fixed effect when estimating trees and distributed lag effects

• New proposal step: switch exposure, accepted with Metropolis-Hastings

algorithm Simultaneous integration over all distributed lag effects during

tree update

• Multivariate draw of tree terminal node and interaction parameters

• Logistic regression method for regression trees using Polya Gamma latent

variable (Polson, Scott, Windle, 2013, JASA)

• Methods for zero inflated count data coming soon.

• Posterior analysis of tree structures, exposure, and estimates gives

distributed lag effects and uncertainty
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