Fit the BDLIM model with 1 pattern of modification
Usage
bdlim1(
y,
exposure,
covars,
group,
id = NULL,
w_free,
b_free,
df,
nits,
nburn = round(nits/2),
nthin = 1,
progress = TRUE
)
Arguments
- y
A vector of outcomes
- exposure
A matrix of exposures with one row for each individual
- covars
A matrix or data.frame of covariates This should not include the grouping factor (see group below). This may include factor variables.
- group
A vector of group memberships. This should be a factor variable.
- id
An optional vector of individual IDs if there are repeated measures or other groupings that a random intercept should be included for. This must be a factor variable.
- w_free
Logical indicating if the weight functions are shared by all groups (FALSE) or group-specific (TRUE).
- b_free
Logical indicating if the effect sizes are shared by all groups (FALSE) or group-specific (TRUE).
- df
Degrees of freedom for the weight functions
- nits
Number of MCMC iterations.
- nburn
Number of MCMC iterations to be discarded as burn in. The default is half if the MCMC iterations. This is only used for WAIC in this function but is passed to summary and plot functions and used there.
- nthin
Thinning factors for the MCMC. This is only used for WAIC in this function but is passed to summary and plot functions and used there.
- progress
Logical indicating if a progress bar should be shown during MCMC iterations. Default is TRUE.
Examples
# \donttest{
# run BDLIM with modification by ChildSex
fit_sex <- bdlim1(
y = sbd_bdlim$bwgaz,
exposure = sbd_bdlim[,paste0("pm25_",1:37)],
covars = sbd_bdlim[,c("MomPriorBMI","MomAge","race","Hispanic",
"EstMonthConcept","EstYearConcept")],
group = as.factor(sbd_bdlim$ChildSex),
w_free = TRUE,
b_free = TRUE,
df = 5,
nits = 5000
)
#> Start MCMC for bdlim1 with w_free=TRUE and b_free=TRUE.
#>
|
| | 0%
|
| | 1%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|== | 4%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 9%
|
|======= | 10%
|
|======= | 11%
|
|======== | 11%
|
|======== | 12%
|
|========= | 12%
|
|========= | 13%
|
|========= | 14%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 16%
|
|============ | 17%
|
|============ | 18%
|
|============= | 18%
|
|============= | 19%
|
|============== | 19%
|
|============== | 20%
|
|============== | 21%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 22%
|
|================ | 23%
|
|================ | 24%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 29%
|
|===================== | 30%
|
|===================== | 31%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================= | 34%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 39%
|
|============================ | 40%
|
|============================ | 41%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|============================== | 44%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 46%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 49%
|
|=================================== | 50%
|
|=================================== | 51%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 52%
|
|===================================== | 53%
|
|===================================== | 54%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 59%
|
|========================================== | 60%
|
|========================================== | 61%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================ | 64%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 69%
|
|================================================= | 70%
|
|================================================= | 71%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|=================================================== | 74%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 79%
|
|======================================================== | 80%
|
|======================================================== | 81%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|========================================================== | 84%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 89%
|
|=============================================================== | 90%
|
|=============================================================== | 91%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 92%
|
|================================================================= | 93%
|
|================================================================= | 94%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 96%
|
|==================================================================== | 97%
|
|==================================================================== | 98%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 99%
|
|======================================================================| 100%
#> End MCMC for bdlim1 with w_free=TRUE and b_free=TRUE.
# show model fit results
fit_sex
#>
#> Call:
#> bdlim1(y = sbd_bdlim$bwgaz, exposure = sbd_bdlim[, paste0("pm25_",
#> 1:37)], covars = sbd_bdlim[, c("MomPriorBMI", "MomAge", "race",
#> "Hispanic", "EstMonthConcept", "EstYearConcept")], group = as.factor(sbd_bdlim$ChildSex),
#> w_free = TRUE, b_free = TRUE, df = 5, nits = 5000)
#>
#> Modification pattern WAIC (lower is better fit):
#> [1] 1635.946
#summarize results
sfit_sex <- summary(fit_sex)
sfit_sex
#> $WAIC
#> [1] 1635.946
#>
#> $call
#> bdlim1(y = sbd_bdlim$bwgaz, exposure = sbd_bdlim[, paste0("pm25_",
#> 1:37)], covars = sbd_bdlim[, c("MomPriorBMI", "MomAge", "race",
#> "Hispanic", "EstMonthConcept", "EstYearConcept")], group = as.factor(sbd_bdlim$ChildSex),
#> w_free = TRUE, b_free = TRUE, df = 5, nits = 5000)
#>
#> $cumulative
#> group mean median sd q2.5 q97.5 pr_gr0
#> 1 F -0.01659887 -0.008101259 0.06340898 -0.1663946 0.1041476 0.4092
#> 2 M -0.44644829 -0.446032044 0.08075686 -0.6050052 -0.2913208 0.0000
#>
#> $dlfun
#> group time mean median sd q2.5
#> 1 F 1 -1.052026e-03 -4.672335e-04 0.006945532 -0.017169762
#> 2 F 2 -1.454176e-03 -6.125987e-04 0.005813573 -0.015260430
#> 3 F 3 -1.841534e-03 -9.002886e-04 0.004902968 -0.013839039
#> 4 F 4 -2.199304e-03 -1.175154e-03 0.004316360 -0.013067588
#> 5 F 5 -2.512695e-03 -1.383335e-03 0.004105080 -0.012766886
#> 6 F 6 -2.766912e-03 -1.588444e-03 0.004203872 -0.013078916
#> 7 F 7 -2.947162e-03 -1.745993e-03 0.004457625 -0.013889241
#> 8 F 8 -3.038652e-03 -1.822151e-03 0.004708793 -0.014623508
#> 9 F 9 -3.026589e-03 -1.803530e-03 0.004840934 -0.015026672
#> 10 F 10 -2.896179e-03 -1.730318e-03 0.004780001 -0.014660044
#> 11 F 11 -2.639023e-03 -1.542873e-03 0.004506884 -0.013697115
#> 12 F 12 -2.272300e-03 -1.290740e-03 0.004102922 -0.012663446
#> 13 F 13 -1.819584e-03 -9.671438e-04 0.003698716 -0.011351115
#> 14 F 14 -1.304448e-03 -5.672994e-04 0.003443547 -0.009846487
#> 15 F 15 -7.504654e-04 -2.861791e-04 0.003446271 -0.008869294
#> 16 F 16 -1.812090e-04 -5.349073e-05 0.003694214 -0.008223040
#> 17 F 17 3.797475e-04 1.595203e-04 0.004063119 -0.007937347
#> 18 F 18 9.088308e-04 3.532864e-04 0.004403702 -0.007533810
#> 19 F 19 1.382467e-03 5.752706e-04 0.004595043 -0.007007080
#> 20 F 20 1.780775e-03 8.300829e-04 0.004579472 -0.006272247
#> 21 F 21 2.098635e-03 9.709865e-04 0.004421444 -0.005248766
#> 22 F 22 2.334618e-03 1.078554e-03 0.004230698 -0.004174902
#> 23 F 23 2.487297e-03 1.318076e-03 0.004117177 -0.003456489
#> 24 F 24 2.555243e-03 1.380393e-03 0.004151695 -0.003523977
#> 25 F 25 2.537028e-03 1.267247e-03 0.004329434 -0.003895168
#> 26 F 26 2.431223e-03 1.140399e-03 0.004573604 -0.004513954
#> 27 F 27 2.236402e-03 9.202318e-04 0.004774230 -0.005229660
#> 28 F 28 1.951135e-03 8.261624e-04 0.004823840 -0.006181906
#> 29 F 29 1.575933e-03 6.798815e-04 0.004655686 -0.006711857
#> 30 F 30 1.119066e-03 4.732509e-04 0.004315352 -0.007033764
#> 31 F 31 5.907412e-04 2.316557e-04 0.003933101 -0.007279238
#> 32 F 32 1.167391e-06 2.867246e-05 0.003727496 -0.007988556
#> 33 F 33 -6.394474e-04 -2.775857e-04 0.003955534 -0.009828875
#> 34 F 34 -1.320895e-03 -6.966621e-04 0.004726194 -0.012603572
#> 35 F 35 -2.032967e-03 -1.035356e-03 0.005938780 -0.016888351
#> 36 F 36 -2.765456e-03 -1.324488e-03 0.007436675 -0.020033202
#> 37 F 37 -3.508153e-03 -1.572714e-03 0.009097614 -0.025224609
#> 38 M 1 3.506959e-02 3.560911e-02 0.013324360 0.009217883
#> 39 M 2 2.717817e-02 2.733657e-02 0.010495968 0.006779778
#> 40 M 3 1.939675e-02 1.912672e-02 0.007972324 0.004840850
#> 41 M 4 1.183535e-02 1.138034e-02 0.006046064 0.001524898
#> 42 M 5 4.603994e-03 4.210704e-03 0.005123678 -0.005431811
#> 43 M 6 -2.187322e-03 -1.908000e-03 0.005324930 -0.013618226
#> 44 M 7 -8.428582e-03 -7.565676e-03 0.006137670 -0.022218039
#> 45 M 8 -1.400978e-02 -1.318510e-02 0.006981694 -0.029373396
#> 46 M 9 -1.882089e-02 -1.813338e-02 0.007525166 -0.035094940
#> 47 M 10 -2.275192e-02 -2.222624e-02 0.007602830 -0.038617203
#> 48 M 11 -2.572599e-02 -2.535874e-02 0.007189740 -0.040788602
#> 49 M 12 -2.779880e-02 -2.747103e-02 0.006497414 -0.041377465
#> 50 M 13 -2.905920e-02 -2.880552e-02 0.005867241 -0.041450571
#> 51 M 14 -2.959603e-02 -2.947422e-02 0.005682817 -0.040769317
#> 52 M 15 -2.949813e-02 -2.979270e-02 0.006136777 -0.040879838
#> 53 M 16 -2.885436e-02 -2.944013e-02 0.007052133 -0.041622736
#> 54 M 17 -2.775354e-02 -2.845132e-02 0.008075537 -0.041868700
#> 55 M 18 -2.628453e-02 -2.701614e-02 0.008888492 -0.041588746
#> 56 M 19 -2.453617e-02 -2.517865e-02 0.009246788 -0.040293012
#> 57 M 20 -2.259436e-02 -2.322268e-02 0.009015663 -0.038086168
#> 58 M 21 -2.053330e-02 -2.110579e-02 0.008301524 -0.034846434
#> 59 M 22 -1.842421e-02 -1.905748e-02 0.007310001 -0.031546994
#> 60 M 23 -1.633834e-02 -1.686861e-02 0.006304190 -0.027756668
#> 61 M 24 -1.434693e-02 -1.454389e-02 0.005596304 -0.025221878
#> 62 M 25 -1.252123e-02 -1.231002e-02 0.005431259 -0.024262258
#> 63 M 26 -1.093248e-02 -1.035102e-02 0.005769083 -0.024087817
#> 64 M 27 -9.651916e-03 -9.049393e-03 0.006300247 -0.023882881
#> 65 M 28 -8.750789e-03 -8.185475e-03 0.006684534 -0.023315989
#> 66 M 29 -8.280119e-03 -8.006024e-03 0.006712183 -0.022686263
#> 67 M 30 -8.210051e-03 -8.206980e-03 0.006438616 -0.021465104
#> 68 M 31 -8.490510e-03 -8.534591e-03 0.006091246 -0.021099879
#> 69 M 32 -9.071419e-03 -8.852221e-03 0.006036809 -0.021604698
#> 70 M 33 -9.902705e-03 -9.030429e-03 0.006659338 -0.023946566
#> 71 M 34 -1.093429e-02 -1.007640e-02 0.008088621 -0.027121946
#> 72 M 35 -1.211610e-02 -1.183281e-02 0.010172056 -0.031680510
#> 73 M 36 -1.339807e-02 -1.385342e-02 0.012689195 -0.036930754
#> 74 M 37 -1.473010e-02 -1.568874e-02 0.015460495 -0.042440062
#> q97.5 pr_gr0
#> 1 0.0137785504 0.4364
#> 2 0.0101205782 0.4084
#> 3 0.0072223875 0.3588
#> 4 0.0050116059 0.3096
#> 5 0.0036258752 0.2776
#> 6 0.0031067792 0.2688
#> 7 0.0033034563 0.2664
#> 8 0.0038073690 0.2744
#> 9 0.0043542129 0.2792
#> 10 0.0044433254 0.2844
#> 11 0.0041831262 0.2876
#> 12 0.0040850829 0.2940
#> 13 0.0042573542 0.3088
#> 14 0.0050073216 0.3664
#> 15 0.0059725688 0.4232
#> 16 0.0080253732 0.4812
#> 17 0.0099516297 0.5348
#> 18 0.0113248346 0.5768
#> 19 0.0124323586 0.6016
#> 20 0.0127734131 0.6356
#> 21 0.0129269494 0.6536
#> 22 0.0127829496 0.6844
#> 23 0.0129092047 0.7096
#> 24 0.0131704977 0.7208
#> 25 0.0134958172 0.7092
#> 26 0.0138258029 0.6832
#> 27 0.0136778158 0.6588
#> 28 0.0132848907 0.6352
#> 29 0.0119253626 0.6116
#> 30 0.0110156481 0.5920
#> 31 0.0095034296 0.5576
#> 32 0.0081442204 0.5084
#> 33 0.0077241049 0.4376
#> 34 0.0086166855 0.3924
#> 35 0.0098762832 0.3740
#> 36 0.0111676775 0.3656
#> 37 0.0125458330 0.3700
#> 38 0.0601457084 0.9920
#> 39 0.0471733050 0.9904
#> 40 0.0349468758 0.9904
#> 41 0.0238347597 0.9832
#> 42 0.0141971351 0.8096
#> 43 0.0071740392 0.3836
#> 44 0.0019438032 0.0692
#> 45 -0.0022758734 0.0048
#> 46 -0.0061032724 0.0000
#> 47 -0.0098043092 0.0000
#> 48 -0.0132117393 0.0000
#> 49 -0.0164250674 0.0000
#> 50 -0.0183861066 0.0000
#> 51 -0.0187208207 0.0000
#> 52 -0.0168256976 0.0000
#> 53 -0.0127856937 0.0000
#> 54 -0.0085203342 0.0000
#> 55 -0.0044702949 0.0008
#> 56 -0.0013698963 0.0184
#> 57 0.0007628790 0.0296
#> 58 0.0010106265 0.0324
#> 59 0.0004667659 0.0284
#> 60 -0.0010938698 0.0100
#> 61 -0.0027300865 0.0032
#> 62 -0.0026180007 0.0068
#> 63 -0.0006818064 0.0204
#> 64 0.0010821260 0.0444
#> 65 0.0035812152 0.0636
#> 66 0.0044943942 0.0776
#> 67 0.0034272243 0.0828
#> 68 0.0029008501 0.0788
#> 69 0.0020197370 0.0760
#> 70 0.0019637762 0.0660
#> 71 0.0025333586 0.0812
#> 72 0.0049628548 0.1328
#> 73 0.0098369756 0.1596
#> 74 0.0154072335 0.1940
#>
#> $regcoef
#> name mean median sd q2.5
#> 1 interceptF 5.6583604865 5.587622037 6.324598745 -6.899013907
#> 2 interceptM 6.1139550664 6.113260967 6.328272199 -6.343814379
#> 3 MomPriorBMI -0.0160120545 -0.016071038 0.003164924 -0.022310237
#> 4 MomAge 0.0009648609 0.001019695 0.003001433 -0.005132967
#> 5 raceAsianPI -0.0193478000 -0.022201013 0.176731906 -0.370170412
#> 6 raceBlack -0.1009289662 -0.106402046 0.182161721 -0.461531498
#> 7 racewhite -0.0492555570 -0.052519489 0.169597474 -0.383898780
#> 8 HispanicNonHispanic 0.2561880862 0.256460145 0.040328323 0.177703903
#> 9 EstMonthConcept2 -0.1456010127 -0.145619513 0.094047066 -0.334729657
#> 10 EstMonthConcept3 -0.1018310104 -0.100479865 0.097587152 -0.293708791
#> 11 EstMonthConcept4 -0.1777050692 -0.177051413 0.093697149 -0.360857515
#> 12 EstMonthConcept5 -0.0997951260 -0.099628993 0.087543279 -0.271519613
#> 13 EstMonthConcept6 -0.1854240922 -0.184277602 0.083848860 -0.353776238
#> 14 EstMonthConcept7 -0.0449401834 -0.044617866 0.085212533 -0.207681656
#> 15 EstMonthConcept8 0.1527704643 0.155778943 0.096301796 -0.045010557
#> 16 EstMonthConcept9 0.3135320710 0.311492996 0.092667590 0.124903697
#> 17 EstMonthConcept10 0.4140296008 0.416152617 0.092321730 0.230822948
#> 18 EstMonthConcept11 0.2225742542 0.223369810 0.086595098 0.048908501
#> 19 EstMonthConcept12 0.0766681663 0.078415748 0.084882644 -0.091700980
#> 20 EstYearConcept -0.0021152456 -0.002081239 0.003139907 -0.008022602
#> 21 EF -0.0071990641 -0.007927092 0.030968421 -0.066053192
#> 22 EM -0.1253561744 -0.125066491 0.020340973 -0.165376227
#> q97.5 pr_gr0
#> 1 17.510728855 0.8172
#> 2 18.136105017 0.8348
#> 3 -0.009919573 0.0000
#> 4 0.006838140 0.6360
#> 5 0.336220510 0.4588
#> 6 0.263360542 0.2780
#> 7 0.290153392 0.3756
#> 8 0.335402888 1.0000
#> 9 0.039281343 0.0616
#> 10 0.084253984 0.1540
#> 11 0.008351850 0.0300
#> 12 0.078444107 0.1276
#> 13 -0.024539907 0.0148
#> 14 0.119829195 0.3036
#> 15 0.331562633 0.9372
#> 16 0.490990030 0.9996
#> 17 0.589078559 1.0000
#> 18 0.388623796 0.9932
#> 19 0.241981946 0.8176
#> 20 0.004053558 0.2536
#> 21 0.053590813 0.4092
#> 22 -0.086271056 0.0000
#>
#> $sigma
#> name mean median sd q2.5 q97.5
#> 1 sigma 0.5417691 0.5412167 0.5412167 0.5193125 0.5680018
#>
#> $names_groups
#> [1] "F" "M"
#>
#> $n
#> [1] 1000
#>
#> $family
#> [1] "gaussian"
#>
#> attr(,"class")
#> [1] "summary.bdlim1"
# graph the estimated distributed lag functions for each group
plot(sfit_sex)
# run BDLIM with no modification
# here a single group is put in for group
# the group must be a factor
# w_free and b_free must be FALSE because modification is not allowed with only one group
fit_onegroup <- bdlim1(
y = sbd_bdlim$bwgaz,
exposure = sbd_bdlim[,paste0("pm25_",1:37)],
covars = sbd_bdlim[,c("MomPriorBMI","MomAge","race","Hispanic",
"EstMonthConcept","EstYearConcept")],
group = as.factor(rep("A",nrow(sbd_bdlim))),
w_free = FALSE,
b_free = FALSE,
df = 5,
nits = 5000
)
#> Start MCMC for bdlim1 with w_free=FALSE and b_free=FALSE.
#>
|
| | 0%
|
| | 1%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|== | 4%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 9%
|
|======= | 10%
|
|======= | 11%
|
|======== | 11%
|
|======== | 12%
|
|========= | 12%
|
|========= | 13%
|
|========= | 14%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 16%
|
|============ | 17%
|
|============ | 18%
|
|============= | 18%
|
|============= | 19%
|
|============== | 19%
|
|============== | 20%
|
|============== | 21%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 22%
|
|================ | 23%
|
|================ | 24%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 29%
|
|===================== | 30%
|
|===================== | 31%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================= | 34%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 39%
|
|============================ | 40%
|
|============================ | 41%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|============================== | 44%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 46%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 49%
|
|=================================== | 50%
|
|=================================== | 51%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 52%
|
|===================================== | 53%
|
|===================================== | 54%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 59%
|
|========================================== | 60%
|
|========================================== | 61%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================ | 64%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 69%
|
|================================================= | 70%
|
|================================================= | 71%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|=================================================== | 74%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 79%
|
|======================================================== | 80%
|
|======================================================== | 81%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|========================================================== | 84%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 89%
|
|=============================================================== | 90%
|
|=============================================================== | 91%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 92%
|
|================================================================= | 93%
|
|================================================================= | 94%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 96%
|
|==================================================================== | 97%
|
|==================================================================== | 98%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 99%
|
|======================================================================| 100%
#> End MCMC for bdlim1 with w_free=FALSE and b_free=FALSE.
# show model fit results
fit_onegroup
#>
#> Call:
#> bdlim1(y = sbd_bdlim$bwgaz, exposure = sbd_bdlim[, paste0("pm25_",
#> 1:37)], covars = sbd_bdlim[, c("MomPriorBMI", "MomAge", "race",
#> "Hispanic", "EstMonthConcept", "EstYearConcept")], group = as.factor(rep("A",
#> nrow(sbd_bdlim))), w_free = FALSE, b_free = FALSE, df = 5,
#> nits = 5000)
#>
#> Modification pattern WAIC (lower is better fit):
#> [1] 3107.178
#summarize results
sfit_onegroup <- summary(fit_onegroup)
sfit_onegroup
#> $WAIC
#> [1] 3107.178
#>
#> $call
#> bdlim1(y = sbd_bdlim$bwgaz, exposure = sbd_bdlim[, paste0("pm25_",
#> 1:37)], covars = sbd_bdlim[, c("MomPriorBMI", "MomAge", "race",
#> "Hispanic", "EstMonthConcept", "EstYearConcept")], group = as.factor(rep("A",
#> nrow(sbd_bdlim))), w_free = FALSE, b_free = FALSE, df = 5,
#> nits = 5000)
#>
#> $cumulative
#> group mean median sd q2.5 q97.5 pr_gr0
#> 1 all -0.3184172 -0.2999182 0.1211001 -0.5883231 -0.1218997 4e-04
#>
#> $dlfun
#> group time mean median sd q2.5 q97.5
#> 1 all 1 0.0500382595 4.881206e-02 0.022207052 0.011613206 0.096126618
#> 2 all 2 0.0346912312 3.335700e-02 0.017517656 0.004557178 0.071554993
#> 3 all 3 0.0197123518 1.832476e-02 0.013514048 -0.004200306 0.048599097
#> 4 all 4 0.0054697700 3.963891e-03 0.010796710 -0.013658232 0.027673962
#> 5 all 5 -0.0076683653 -8.319528e-03 0.009989203 -0.025869513 0.009564599
#> 6 all 6 -0.0193339054 -1.918118e-02 0.010922399 -0.040530305 0.002047322
#> 7 all 7 -0.0291587014 -2.883579e-02 0.012625649 -0.053700418 -0.002592253
#> 8 all 8 -0.0367746045 -3.684963e-02 0.014261932 -0.064688187 -0.005970188
#> 9 all 9 -0.0418134658 -4.213683e-02 0.015352280 -0.071410512 -0.008329336
#> 10 all 10 -0.0439071366 -4.426036e-02 0.015629878 -0.073227275 -0.008452523
#> 11 all 11 -0.0428591841 -4.324180e-02 0.015011729 -0.070958326 -0.007930858
#> 12 all 12 -0.0391600399 -3.958648e-02 0.013742986 -0.064834161 -0.006933076
#> 13 all 13 -0.0334718516 -3.399006e-02 0.012211333 -0.055536263 -0.004465121
#> 14 all 14 -0.0264567669 -2.678186e-02 0.010886362 -0.046331291 -0.002632212
#> 15 all 15 -0.0187769334 -1.837139e-02 0.010233091 -0.038813423 0.001017049
#> 16 all 16 -0.0110944987 -1.040573e-02 0.010447301 -0.032515716 0.008103206
#> 17 all 17 -0.0040716106 -3.305002e-03 0.011266913 -0.026657806 0.016144226
#> 18 all 18 0.0016295834 2.157317e-03 0.012180471 -0.022810673 0.023880063
#> 19 all 19 0.0053469357 5.427787e-03 0.012712560 -0.019431562 0.028749455
#> 20 all 20 0.0066114503 6.262668e-03 0.012594828 -0.017980731 0.030579148
#> 21 all 21 0.0057267391 5.599276e-03 0.011973142 -0.017109163 0.028532293
#> 22 all 22 0.0031895655 3.058885e-03 0.011176477 -0.018478996 0.024616046
#> 23 all 23 -0.0005033068 8.476286e-06 0.010587823 -0.021504470 0.019473547
#> 24 all 24 -0.0048551144 -4.026258e-03 0.010515645 -0.026411537 0.015197758
#> 25 all 25 -0.0093690937 -8.950353e-03 0.011014021 -0.033360643 0.011133385
#> 26 all 26 -0.0135484811 -1.355319e-02 0.011843925 -0.039786160 0.007234839
#> 27 all 27 -0.0168965130 -1.706692e-02 0.012628487 -0.044034198 0.005304430
#> 28 all 28 -0.0189164260 -1.916774e-02 0.013005751 -0.046521779 0.003902172
#> 29 all 29 -0.0192280446 -1.945358e-02 0.012748719 -0.045148092 0.003422266
#> 30 all 30 -0.0179175453 -1.801236e-02 0.011962561 -0.041931878 0.003504038
#> 31 all 31 -0.0151876930 -1.521611e-02 0.010983868 -0.037592579 0.004415636
#> 32 all 32 -0.0112412523 -1.066910e-02 0.010381292 -0.033239951 0.006755703
#> 33 all 33 -0.0062809880 -5.258727e-03 0.010858401 -0.028830063 0.011305257
#> 34 all 34 -0.0005096648 3.365352e-04 0.012789285 -0.025693307 0.020886317
#> 35 all 35 0.0058699525 4.738214e-03 0.015967644 -0.023880468 0.036091154
#> 36 all 36 0.0126550994 1.046530e-02 0.019972894 -0.023996326 0.053492815
#> 37 all 37 0.0196430109 1.660745e-02 0.024455090 -0.024183566 0.071417709
#> pr_gr0
#> 1 0.9996
#> 2 0.9912
#> 3 0.9488
#> 4 0.6588
#> 5 0.2616
#> 6 0.0400
#> 7 0.0180
#> 8 0.0076
#> 9 0.0044
#> 10 0.0036
#> 11 0.0004
#> 12 0.0004
#> 13 0.0028
#> 14 0.0156
#> 15 0.0324
#> 16 0.1284
#> 17 0.3828
#> 18 0.5476
#> 19 0.6536
#> 20 0.6888
#> 21 0.6984
#> 22 0.6208
#> 23 0.5004
#> 24 0.3248
#> 25 0.2096
#> 26 0.1324
#> 27 0.0912
#> 28 0.0816
#> 29 0.0776
#> 30 0.0684
#> 31 0.0852
#> 32 0.1468
#> 33 0.3356
#> 34 0.5080
#> 35 0.5848
#> 36 0.7280
#> 37 0.7816
#>
#> $regcoef
#> name mean median sd q2.5
#> 1 interceptall 1.0053057396 0.9435615139 9.573831761 -17.736332990
#> 2 MomPriorBMI -0.0128161693 -0.0129383531 0.006572935 -0.025863997
#> 3 MomAge 0.0009698571 0.0010281618 0.006197181 -0.011324524
#> 4 raceAmInd 0.5026742600 0.5398510361 4.868252953 -8.862496874
#> 5 raceAsianPI 0.0429214006 0.0865122848 4.866348429 -9.264796472
#> 6 raceBlack 0.2175654220 0.2565301529 4.869786729 -9.101890733
#> 7 racewhite 0.2292053242 0.2569217638 4.868821949 -9.138486637
#> 8 HispanicNonHispanic 0.0725745586 0.0718154210 0.081680606 -0.084263798
#> 9 EstMonthConcept2 -0.7461284880 -0.7427810169 0.198844017 -1.145290955
#> 10 EstMonthConcept3 -0.2720966546 -0.2679461394 0.217610207 -0.678609185
#> 11 EstMonthConcept4 -0.4464398574 -0.4464582795 0.210262992 -0.859705497
#> 12 EstMonthConcept5 -0.0858711074 -0.0852191828 0.194611140 -0.471755043
#> 13 EstMonthConcept6 -0.2620705854 -0.2615817318 0.177207298 -0.613941527
#> 14 EstMonthConcept7 -0.2051188290 -0.2055368345 0.191203928 -0.571722882
#> 15 EstMonthConcept8 -0.1381595182 -0.1363281539 0.218015968 -0.568022089
#> 16 EstMonthConcept9 0.3281570639 0.3320009654 0.224159857 -0.116283282
#> 17 EstMonthConcept10 0.3038605003 0.3040384922 0.230278691 -0.145621451
#> 18 EstMonthConcept11 0.2331417588 0.2349690566 0.201591038 -0.162076054
#> 19 EstMonthConcept12 0.0852621251 0.0854955511 0.181189263 -0.271787215
#> 20 EstYearConcept 0.0005335146 0.0005022075 0.005228678 -0.009429765
#> 21 E -0.1543707830 -0.1536570077 0.042581780 -0.238957120
#> q97.5 pr_gr0
#> 1 1.964364e+01 0.5440
#> 2 8.200152e-05 0.0260
#> 3 1.291893e-02 0.5604
#> 4 9.727777e+00 0.5432
#> 5 9.235665e+00 0.5060
#> 6 9.463881e+00 0.5216
#> 7 9.404285e+00 0.5228
#> 8 2.293378e-01 0.8076
#> 9 -3.752693e-01 0.0000
#> 10 1.514936e-01 0.1040
#> 11 -3.309960e-02 0.0204
#> 12 2.938202e-01 0.3164
#> 13 7.448283e-02 0.0660
#> 14 1.794025e-01 0.1348
#> 15 2.772439e-01 0.2600
#> 16 7.584762e-01 0.9296
#> 17 7.589926e-01 0.9064
#> 18 6.262672e-01 0.8776
#> 19 4.408074e-01 0.6808
#> 20 1.133638e-02 0.5376
#> 21 -7.258479e-02 0.0004
#>
#> $sigma
#> name mean median sd q2.5 q97.5
#> 1 sigma 1.130948 1.130797 1.130797 1.083273 1.180284
#>
#> $names_groups
#> [1] "all"
#>
#> $n
#> [1] 1000
#>
#> $family
#> [1] "gaussian"
#>
#> attr(,"class")
#> [1] "summary.bdlim1"
# graph the estimated distributed lag functions for the one group
plot(sfit_onegroup)
# extract the weight function
getw(fit_onegroup)
#> group time mean median sd q2.5 q97.5
#> 1 all 1 -0.359485615 -3.193542e-01 0.09320389 -0.486868657 -0.11628218
#> 2 all 2 -0.248508811 -2.197547e-01 0.08274725 -0.369406649 -0.03860241
#> 3 all 3 -0.140191837 -1.215588e-01 0.07455418 -0.256723728 0.04011572
#> 4 all 4 -0.037194524 -2.832983e-02 0.06906203 -0.151186341 0.11313086
#> 5 all 5 0.057823295 5.867378e-02 0.06622443 -0.079078505 0.18109032
#> 6 all 6 0.142201792 1.335474e-01 0.06541334 -0.021704641 0.23941328
#> 7 all 7 0.213281134 1.987575e-01 0.06561237 0.026901834 0.28224569
#> 8 all 8 0.268401492 2.487827e-01 0.06575566 0.064325897 0.32053391
#> 9 all 9 0.304903034 2.829796e-01 0.06499787 0.086795763 0.34593800
#> 10 all 10 0.320125929 2.947633e-01 0.06289996 0.095974967 0.35214299
#> 11 all 11 0.312650800 2.894514e-01 0.05977628 0.085890897 0.33772504
#> 12 all 12 0.286020076 2.648541e-01 0.05707412 0.061414608 0.31389734
#> 13 all 13 0.245016642 2.249314e-01 0.05645559 0.049042646 0.29637017
#> 14 all 14 0.194423379 1.760188e-01 0.05887702 0.035690199 0.27106243
#> 15 all 15 0.139023173 1.237310e-01 0.06400534 -0.009621893 0.25204837
#> 16 all 16 0.083598905 6.928450e-02 0.07050247 -0.056689939 0.22555003
#> 17 all 17 0.032933459 2.301008e-02 0.07673887 -0.106974084 0.19543603
#> 18 all 18 -0.008190282 -1.489122e-02 0.08123185 -0.147559771 0.16425595
#> 19 all 19 -0.034989434 -3.775948e-02 0.08279368 -0.167190145 0.14398441
#> 20 all 20 -0.044075666 -4.255423e-02 0.08094492 -0.165187064 0.14005449
#> 21 all 21 -0.037638855 -3.944759e-02 0.07688592 -0.151987357 0.13786654
#> 22 all 22 -0.019263427 -2.314427e-02 0.07239135 -0.138931762 0.14199544
#> 23 all 23 0.007466188 5.979354e-05 0.06923249 -0.111890766 0.16770828
#> 24 all 24 0.038965564 3.190698e-02 0.06864256 -0.086903267 0.18648698
#> 25 all 25 0.071650273 6.177844e-02 0.07071390 -0.064156009 0.20922252
#> 26 all 26 0.101935886 9.410214e-02 0.07435055 -0.048976368 0.22690575
#> 27 all 27 0.126237976 1.188004e-01 0.07786068 -0.034910186 0.24560344
#> 28 all 28 0.140972114 1.299904e-01 0.07959038 -0.025807256 0.25512657
#> 29 all 29 0.143394841 1.332764e-01 0.07855530 -0.026378542 0.26462352
#> 30 all 30 0.134126565 1.237778e-01 0.07545557 -0.028685282 0.25728340
#> 31 all 31 0.114628661 1.015200e-01 0.07214021 -0.030700923 0.24597010
#> 32 all 32 0.086362504 6.905205e-02 0.07130293 -0.043637373 0.24503268
#> 33 all 33 0.050789470 3.555361e-02 0.07573195 -0.066329371 0.24145273
#> 34 all 34 0.009370934 -3.710891e-03 0.08678352 -0.125412969 0.22143340
#> 35 all 35 -0.036431728 -3.346339e-02 0.10381079 -0.202542507 0.20227620
#> 36 all 36 -0.085157141 -7.441205e-02 0.12520007 -0.287759664 0.17495002
#> 37 all 37 -0.135343930 -1.132658e-01 0.14935613 -0.376285682 0.16188012
#> pr_gr0
#> 1 0.0000
#> 2 0.0084
#> 3 0.0508
#> 4 0.3408
#> 5 0.7380
#> 6 0.9596
#> 7 0.9816
#> 8 0.9928
#> 9 0.9960
#> 10 0.9968
#> 11 1.0000
#> 12 1.0000
#> 13 0.9976
#> 14 0.9848
#> 15 0.9680
#> 16 0.8720
#> 17 0.6176
#> 18 0.4528
#> 19 0.3468
#> 20 0.3116
#> 21 0.3020
#> 22 0.3796
#> 23 0.5000
#> 24 0.6756
#> 25 0.7908
#> 26 0.8680
#> 27 0.9092
#> 28 0.9188
#> 29 0.9228
#> 30 0.9320
#> 31 0.9152
#> 32 0.8536
#> 33 0.6640
#> 34 0.4916
#> 35 0.4148
#> 36 0.2716
#> 37 0.2180
# }