If you are interested in the BDLIM method please see the new package with faster implementation, expanded functionality, and improved user interface: https://anderwilson.github.io/bdlim/
Load the regimes package, simulate data, and fit BDLIM with all four options (BDLIM-n, BDLIM-b, BSLIM-w, BDLIM-bw). When using BDLIM for data analysis increase the number of iterations.
#load package
library(regimes)
#simulate data from scenario 3
dat <- simregimes(scenario="bdlim2", seed=1234, n=1000)
#estimate model
fit <- bdlim(dat$Y,dat$X,dat$Z,dat$G,"all",niter=1000)
Now display some results using the summary method.
## [1] "beta" "cumulative" "w" "bw" "model"
## [6] "modelfit" "call" "windows" "coefficients"
##
## Model fit statistics:
## DIC pD modelprob
## BDLIM_bw 6421.401 23.798 0.937
## BDLIM_b 6419.175 18.870 0.063
## BDLIM_w 6633.567 25.610 0.000
## BDLIM_n 7070.935 19.213 0.000
##
##
## Posterior results for BDLIM_bw:
##
## Beta:
## mean sd q2.5 q97.5 Pr>0 n_eff
## 0 0.1070450 0.008117157 0.09233272 0.1248538 1 18.81189
## 1 -0.2042449 0.006049035 -0.21663814 -0.1929648 0 34.74529
##
## Cumulative:
## mean sd q2.5 q97.5 Pr>0 n_eff
## 0 2.969692 0.2079919 2.623210 3.389669 1 5.198216
## 1 -6.105803 0.1698880 -6.460251 -5.785855 0 6.970461
##
## Critical windows identified with weighted exposures, beta*w(t):
##
## 0 5-31, 36-37
## 1 3-30
##
## n_eff for beta*w(t): min 25.3, max 500, mean 328.6, median 353.3
## n_eff for w(t): min 123.6, max 1135.8, mean 493.8, median 500
##
## Coefficients for covariates:
##
## mean sd q2.5 q97.5 Pr>0 n_eff
## G0 0.95944372 2.0959020 -3.27549204 4.3784869 0.696 5.082563
## G1 0.77557420 1.7151645 -2.39977903 4.3182383 0.708 6.318867
## Z1 -0.05247123 0.2005363 -0.46360920 0.3165683 0.402 500.000000
## Z2 -0.15036258 0.1862671 -0.51480902 0.2037550 0.224 500.000000
## Z3 -0.24169066 0.1834509 -0.61443342 0.1100082 0.092 269.906974
## Z4 -0.78938477 0.1811849 -1.12352644 -0.4309955 0.000 500.000000
## Z5 0.33218046 0.1953857 -0.05976555 0.7028209 0.958 464.298975
## Z6 0.92861930 0.1812740 0.59457956 1.2519625 1.000 500.000000
## Z7 -0.60418044 0.1908247 -0.95433441 -0.2025071 0.002 465.839120
## Z8 1.34554671 0.1986730 0.96716318 1.7377969 1.000 327.566346
## Z9 0.02866055 0.1951945 -0.36374748 0.4162282 0.552 589.279249
## Z10 0.85203406 0.1902137 0.47862619 1.1982570 1.000 432.083096
Now display some results via plots.